home *** CD-ROM | disk | FTP | other *** search
- >5.Marking sets on the number line
- (-1<x<5⁄x≥3)Ÿxπ6
- MYSZEK 2xy
- EXAMPLE
- v500
- ;introduction
- e
- t100
- p30
- t0
-
- zo
- t1
- p7
- t0
- zom
- t102
- wT14
- ;p7
- t0
- t2
- p6
- t0
- ;enter the ineqs
- n(m
- k-m
- c1m
- k<m
- cxm
- k<m
- c5m
- com
- crm
- cxm
- k.m
- c3m
- n)m
- cam
- cnm
- cdm
- cxm
- k#m
- c6m
- t5
- p3
- t0
- kem
- ;enter
- t6
- wT8
- t0
- t7
- p3
- t0
- ;first inequality
- ww
- wx-1
- t21
- p5
- t0
- e
- t8
- p4
- t0
- m
- wx5
- t28
- p4
- t0
- m
- e
- t9
- p4
- t0
- wEm
- ;2nd inequality
- t11
- p4
- t0
- ww
- t12
- p4
- t0
- wx3
- m
- wx+i
- m
- t13
- p4
- t0
- wx3
- m
- m
- wE
- t19
- p2
- t0
- wEm
- ;3rd inequality
- ww
- t10
- p4
- t0
- wx6
- m
- m
- ;mark all
- t14
- p3
- t0
- wx2.5
- wy0
- m
- m
- wx3
- wy0
- m
- m
- wx4
- wy0
- m
- m
- wx5
- wy0
- m
- m
- wx5.5
- wy0
- m
- m
- wx7
- wy0
- m
- m
- ;last enter
- wE
- t16
- p2
- t0
- wEm
-
- t17
- p5
- t0
- wEm
-
- cxm
- k>m
- k-m
- c1m
- cam
- cnm
- cdm
- cxm
- k#m
- c6m
-
- ke
- t18
- p4
- t0
-
- kem
- p3
- oxm
- ;next example
- ze
-
- t101
- p12
- t0
- zxm
- zem
- q
- BLURB
- 1`We are going to show the solution of the inequalities:
- 1`#@(-1<x<5⁄x≥3)Ÿxπ6@
- 1`on the number line. To do that we open the &Marking sets& window.
- 2`Following this hint, we write the inequalities in the window.
- 5`Having introduced the inequalities, we press &ENTER&.
- 6`Now we should mark the conditions on the number line.
- 6`Hints below the title of the window may help.
- 7`We click on the first inequality to select it.
- 21`Now we should mark the interval on the number line.
- 21`#"Notice carefully, how to do it!"
- 8`To mark the interval we place the mouse at the point
- 8`#$"x=-1"$,
- 8`#press the left mouse button...
- 28`#drag to the point
- 28`#$"x=5"$.
- 28`#and release the button.
- 9`We press &ENTER& since none of the points:
- 9`$"x=-1"$ , $"x=5"$ satisfies the inequality.
- 11`Now we select the inequality:`#$"x≥3"$
- 12`To mark the condition we drag the mouse from
- 12`$"x=3"$ to the right edge of the window.
- 13`Next we mark the point $"x=2"$, since
- 13`this value of $"x"$ satisfies our inequality.
- 14`Now we should mark all the points and intervals
- 14`that satisfy the whole set of conditions.
- 16`We press &ENTER& to check our work.
- 17`It is possible to rewrite the
- 17`conditions in a simpler form.
- 17`We press &ENTER& again to do it.
- 18`Having introduced the new version of the conditions,
- 18`we press &ENTER& again. The program checks our calculations.
- 10`Now we should mark the solution
- 10`of the last inequality: $"xπ6"$
- 19`Next we press &ENTER&.
-
- 100`#We show how to use 2xy
- 100`#to mark sets on the number line.
- 100``#"The presentation proceeds automatically."`
- 101`#In a moment &Examples& window will appear.
- 101`You can watch the same presentation again,
- 101`#or load the next example,
- 101`#or close the window and solve your own problem.
- 102`The information about what to do now is
- 102`displayed below the title of the window
-
-
-
-